December 4, 2019 L1 FDV

Math exam

1 Propositional logic

We are going to take a look at a class of logic formulæ that are very useful in logic programming and formal methods: HORN clauses.

Given a family of logic variables $(A_i)_{i \in \mathbb{N}}$, we let:

$$\bigwedge_{i=0}^{n} A_i = A_0 \wedge A_1 \wedge \dots \wedge A_n = A_n \wedge \bigwedge_{i=0}^{n-1} A_i$$

and the dual

$$\bigvee_{i=0}^{n} A_i = A_0 \vee A_1 \vee \cdots \vee A_n = A_n \vee \bigvee_{i=0}^{n-1} A_i$$

We can see it looks like the notation $\sum_{i=0}^{n}$, except that we use \wedge or \vee instead of +.

Given a logic variable B and a family $(A_i)_{i\in\mathbb{N}}$, a HORN clause is a formula of the form

$$\left(\bigwedge_{i=0}^{n} A_i\right) \Rightarrow B$$

where $n \in \mathbb{N}$. For all $n \in \mathbb{N}$, we let H_n be the formula $\left(\bigwedge_{i=0}^n A_i\right) \Rightarrow B$.

Here are some examples of HORN clauses:

- H_0 : $A_0 \Rightarrow B$
- $H_1: (A_0 \wedge A_1) \Rightarrow B$
- H_2 : $(A_0 \wedge A_1 \wedge A_2) \Rightarrow B$
- ...
- 1. Prove that $H_0 \equiv (\neg A_0) \vee B$.
- 2. Prove that $H_1 \equiv (\neg A_0) \lor (\neg A_1) \lor B$.

- 3. Prove that $H_2 \equiv (\neg A_0) \vee (\neg A_1) \vee (\neg A_2) \vee B$. Given the number of variables, it is advised to not use a truth table.
- 4. More generally, we would like to prove that $\forall n \in \mathbb{N}, H_n = \left(\bigvee_{i=0}^n \neg A_i\right) \lor B$.
 - (a) Prove that $\forall n \in \mathbb{N}, H_n \equiv \left(\neg\left(\bigwedge_{i=0}^n A_i\right)\right) \vee B$.
 - (b) Show by induction that $\forall n \in \mathbb{N}, \neg \left(\bigwedge_{i=0}^{n} A_i\right) \equiv \bigvee_{i=0}^{n} (\neg A_i)$. We could use the expression on the very right of the defintions of \bigwedge and \bigvee . We can see it looks like a generalization of DE MORGAN laws.
 - (c) Infer from previous results that $\forall n \in \mathbb{N}, H_n = \left(\bigvee_{i=0}^n \neg A_i\right) \vee B$.

2 More logic functions

1. We define the logic function \oplus (called "xor", "exclusive or", or "exclusive disjunction") by

$$A \oplus B := ((\neg A) \land B) \lor (A \land (\neg B))$$

Show that $A \oplus B \equiv \neg (A \Leftrightarrow B)$.

2. We define the logic function INH (called "inhibitor") by

$$A \text{ INH } B := A \wedge (\neg B)$$

Write the truth table of INH. I invite you to wait after the exam to think about the deep meaning of this function.

3 -jectivity

1. Let E be a set. Let $f: E \to E$. We assume that $\forall x \in E, f \circ f(x) = x$ ie. $f \circ f = Id_E$. Show that f is bijective.

2. Let A be a set. Let

$$g: \mathcal{P}(A) \to \mathcal{P}(A)$$

 $X \mapsto \mathcal{C}_A X$

We recall that $\mathcal{C}_A X$ is the complement of X in A, that is $A \setminus X$. Compute $g \circ g$ and deduce that g is bijective.

- 3. We recall that \mathbb{Q} is the set of rational numbers, ie. numbers that may be written as $\frac{p}{q}$ where $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^*$.
 - (a) Let $x \in \mathbb{Q}$. Show that $1 x \in \mathbb{Q}$.
 - (b) Let

$$h: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1-x & \text{if } x \in \mathbb{Q} \\ x & \text{otherwise} \end{cases}$$

Prove that $\forall x \in \mathbb{R}, h \circ h(x) = x$ by case analysis.

(c) Deduce that h is bijective.