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Syllabi

Multivariate models
L1: Overview of the concepts
L2: Review of multivariate models based on multinomial distributions
L3: Review of other multivariate count models
L4: Log-normal models: MLN and PLN
PLN models
L5: Estimation in the PLN model
L6: PLN-PCA for dimension reduction
L7: PLN-LDA and PLNmixture for classification and clustering
L8: PLNnetwork for network inference
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Microbiome: Impact of Weaning on Piglets’ Microbiome

Data from [MBE+15].
n = 155 samples (= 31 piglets at 5 times)
p = 1038 bacterial species (OTUs) with prevalence ≥ 0.05
Some covariates (sex, sire, etc)
Offsets: oi = offset for sample i (sequencing depth)

Aim: Study impact of weaning on gut microbiota
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A look at the data

Metabarcoding data from [MBE+15]

count matrix with n = 155 piglets, p = 1038 species
mach_counts[1:2, c(3, 9, 12, 15)]

## 5982 347 349 5854
## SF0901 0 23 3 0
## SF0902 8 0 4 0

d = 8 covariates (sex, mother, weaning status, . . . )
mach_covariates[1:2, ]

## Run Project Time Bande sex mere Weaned
## SF0901 3 Kinetic D14 1105 1 17MAG101814 TRUE
## SF0902 3 Kinetic D36 1105 1 17MAG101814 FALSE

Sampling effort in each sample
mach_offsets[1:2, c(1:4, 48:51)]

## 16342 164 5982 5980 10413 6307 8949 346
## SF0901 3084 3084 3084 3084 3084 3084 3084 3084
## SF0902 2182 2182 2182 2182 2182 2182 2182 2182
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Pathobiome: Oak powdery mildew

Data from [JFS+16].
n = 116 oak leaves = samples
p = 114 microbial species

p1 = 66 bacterial species (OTUs, based on the 16S)
p2 = 48 fungal species (OTUs, based on the ITS)

covariates: tree (resistant, intermediate, susceptible), height, distance to trunk, ...
offsets: oi1 6= oi2 = offset for bacteria, fungi

offsets[1:2, c(1:4, 48:51)]

## f_1 f_2 f_3 f_4 E_alphitoides b_1045 b_109 b_1093
## [1,] 2488 2488 2488 2488 2488 8315 8315 8315
## [2,] 2054 2054 2054 2054 2054 662 662 662

Aim. Understand the interaction between the species, including the oak mildew pathogene E.
alphitoides.
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Problematic & Basic formalism

Data tables: Y = (Yij), n× p; X = (Xik), n× d; O = (Oij), n× p

Yij = abundance (read counts) of species j in sample i
Xik = value of covariate k in sample i
Oij = offset (sampling effort) for species j in sample i

Need for multivariate analysis to help deciphering the ecosystem
exhibit patterns of diversity
 summarize the information from Y (PCA, clustering, . . . )
understand between-species interactions
 ’Network’ inference (variable/covariance selection)
correct for technical and confounding effects
 account for covariables and sampling effort

 need a generic framework to model dependencies between count variables
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Microbial Ecology 101
1 Apply your favorite distance (Jaccard, Bray-Curtis, UniFrac, weighted UniFrac, etc)

2 Apply your favorite dimension reduction technique (PCA, MDS/PCoA, NMDS, RDA, PLN, etc)
3 Plot resulting graph
4 Et voilà!
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What kind of generic models?

What kind of generic framework for multivariate count data?
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My Wish List to Santa

We want a family of generative models that are:

Flexible enough to:

model average communities;
model dispersion (biological variability);
model interaction between OTUs (ecological networks);
accomodate heterogeneous communities;
integrate data from different sources (bacterial and fractions)

yet as parcimonious as possible;
interpretable;
fast and easy to fit to data;
good fits to data (e.g. simulate realistic samples).
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Multinomial Models

Intuition
There are p species with proportions π = (π1, . . . , πp) in the species
You pick N (sequencing depths) individuals with replacement

Mathematical Model
Y ∼M(N,π)

Inference is easy

π̂j =
∑n

i=1 Yij∑n
i=1 Ni

with Yij the abundance of species j in sample i and Ni the depth of sample i.
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Multinomial distribution: draw balls (with replacement) from a box

Sequencing + Bioinformatics
Depth = 10
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Multinomial distribution: draw balls (with replacement) from a box

Sequencing + Bioinformatics
Depth = 10

Prop. 0.25 0.30 0.25 0.05 0.10 0.05
Counts 3 2 3 0 2 0

Obs. Prop. 0.3 0.2 0.3 0 0.2 0
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Multinomial Model

A B C
π 0.2 0.2 0.6
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Example of Multinomial Model
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Drawbacks

Heterogeneity
Lack of heterogeneity

Lack of variance
Small dispersion
Wrong correlations
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Drawbacks

Heterogeneity
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 Fit only part of the data
Lack of variance
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Wrong correlations

0.1

1.0

10.0

0.1 0.3 1.0 3.0
Exp. std. dev.

O
bs

. s
td

. d
ev

M. Mariadassou - INRAE Multivariate Count Data Summer School, Weihai 2021 20 / 69



Drawbacks

Heterogeneity
Lack of heterogeneity
 Fit only part of the data
Lack of variance
Small dispersion
Wrong correlations
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Pros and Cons

Pros
+ Parsimonious model: p− 1 parameters to model p abundances
+ Easy to estimate
+ interpretable parameter

Cons
- Bad for heterogeneity
- Bad for dispersion around average composition (' biological variability)
- Bad for correlations between OTUs
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Mixture Models

Intuition
Each sample belongs to one of K groups
Group k is characterized by its composition πk

A sample from group k has composition πk

Reads are sampled according to a multinomial process

Hierarchical Model

Z ∼M(1,α)
Y |Z = k ∼M(N,πk)

where
α = (α1, . . . , αK) are the proportions of the K groups,

M. Mariadassou - INRAE Multivariate Count Data Summer School, Weihai 2021 24 / 69



Mixture Models

Intuition
Each sample belongs to one of K groups
Group k is characterized by its composition πk

A sample from group k has composition πk

Reads are sampled according to a multinomial process

Hierarchical Model

Z ∼M(1,α)
Y |Z = k ∼M(N,πk)

where
α = (α1, . . . , αK) are the proportions of the K groups,

M. Mariadassou - INRAE Multivariate Count Data Summer School, Weihai 2021 24 / 69



Mixture of Multinomial

A B C α
π1 0.6 0.2 0.2
π2 0.2 0.6 0.2
π3 0.2 0.2 0.6

Y|Z = 1 58 22 20
Y|Z = 2 24 59 17
Y|Z = 3 20 22 58
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Example of Mixture Models
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Pros and Cons

Pros
+ Good for heterogeneity

+ Parcimonious: Kp− 1 parameters for K groups

+ Inference is easy when groups are known  simple averages

Cons
- Inference is more involved when groups are unknown
 iterative EM algorithm

- Bad for dispersion
- Bad for correlations between OTUs
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Dirichlet - Multinomial

Intuition
π is the ecosystem-level average composition

Sample i has own composition πi (noisy version of π)  Biological variability
Ni reads are sampled from πi according to a multinomial  Technical / Sampling variability

Hierarchical Model

π Ecosystem average composition
πi ∼ D(κπ) Sample average composition
Yi ∼M(Ni,πi) Observed counts

where 1/κ models the level of variability (large 1/κ  large variablity)

Mixture Layer
Can be combined with a mixture model
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Dirichlet-Multinomial distribution

A B C
π 0.2 0.2 0.6

π1 0.089 0.309 0.602
π2 0.423 0.132 0.445
Y1 9 35 56
Y2 43 12 45
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Example of Dirichlet-Multinomial

−0.2

0.0

0.2

−0.2 0.0 0.2 0.4
Axis.1   [23.2%]

A
xi

s.
2 

  [
5.

8%
]

Type

Real data

Sim. data

One group

M. Mariadassou - INRAE Multivariate Count Data Summer School, Weihai 2021 32 / 69



Example of Dirichlet-Multinomial (Cont’d)
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Pros and Cons

Pros
+ Good for heterogeneity

+ So-so of OK for dispersion

+ Parcimonious: K(p+ 1)− 1 parameters for K groups

Cons
- Inference is more involved

Known groups  gradient descent
Unknown groups  Iterative EM algorithm + gradient descent

- Bad for correlations between OTUs
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Latent Dirichlet Allocation

Intuition
There are K archetype ecosystems 1, . . . ,K

Each archetype has its own composition πk

Each sample Y is made-up of several archetypes in proportions (θ1, . . . , θK)
θkN reads are sampled from a noisy version of πk

Hierarchical Model

π1, . . . ,πK Archetypes average compositions
θ ∼ D(κα) Proportion of archetypes in sample
π̃k ∼ D(κkπk) Noisy version of πk

zi ∼M(1,θ) Archetype of origin of read i
wi|zi = k ∼M(1, π̃k) OTU of read i

where κ and the κk control noise levels.
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Latent Dirichlet Allocation

A B C θ
π1 0.6 0.2 0.2
π2 0.2 0.6 0.2
π3 0.2 0.2 0.6

π̃1 0.784 0.121 0.095
π̃2 0.242 0.579 0.179
π̃3 0.423 0.132 0.445
π 0.532 0.226 0.241
Y 54 18 28
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Example of Latent Dirichlet Allocation
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Example of Latent Dirichlet Allocation
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Example of Latent Dirichlet Allocation
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Example of Latent Dirichlet Allocation
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Pros and Cons

Pros
+ Good for heterogeneity

+ Good for dispersion

+ Parcimonious: K(p+ 1) parameters for K archetypes

Cons
- Inference is very involved
 gradient descent + EM algorithm / Gibbs sampling

- Interpretation is complex  archetypes are not groups
- Bad for correlations between OTUs

M. Mariadassou - INRAE Multivariate Count Data Summer School, Weihai 2021 40 / 69



Pros and Cons

Pros
+ Good for heterogeneity

+ Good for dispersion

+ Parcimonious: K(p+ 1) parameters for K archetypes

Cons
- Inference is very involved
 gradient descent + EM algorithm / Gibbs sampling

- Interpretation is complex  archetypes are not groups
- Bad for correlations between OTUs

M. Mariadassou - INRAE Multivariate Count Data Summer School, Weihai 2021 40 / 69



Partial Summary

Multinomial-based models are good at
modeling compositions;
modeling dispersion around average compositions;
modeling heterogeneity;
using (relatively) few parameters

Multinomial models are bad at
modeling interactions between covariates;
accounting for covariates;
Integrating datasets from different sources (e.g. 16S, ITS)
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Modeling Correlations

Multivariate Gaussian models are the de facto distribution to model correlations.

For continuous variables
The p variables Yi (e.g. species abundances) are explained
by the values of the d covariates Xi and the p offsets Oi

Yi = XiB︸︷︷︸
accounts for

covariates

+ Oi︸︷︷︸
accounts for

sampling effort

+εi, εi ∼ N (0p, Σ︸︷︷︸
dependencies

between species

)

+

But abundances are not gaussian...

Use a latent variable models with a gaussian latent layer and a count observed layer
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Multinomial Log-Normal

Intuition
The latent layer models so-called basis abundances z

Basis are transformed to an average composition π
N reads are sampled from π according to a multinomial distribution

Hierarchical Model

z ∼ N (µ,Σ) Abundance basis

π|z =
(

ezj∑
j′ ezj′

)
j

Average composition

Y ∼M(N,π) Observed composition

Mixture Layer
Can be combined with a mixture model
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Multinomial Log-Normal

A B C
π 0.2 0.2 0.6

π1 0.235 0.213 0.552
Y 20 24 56
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Example of Multinomial Log-Normal
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Pros and Cons

Pros
+ Good for heterogeneity

+ Good for dispersion

+ Good for correlations between OTUs

Cons
- The model is not parsimonious: p(p+ 3)/2 parameters
- Inference is involved
 iterative EM algorithm

- Modeling is done at the proportion level
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Poisson-log normal (PLN) distribution [AH89]

Intuition
The latent layer models basis z

Basis are transformed to average counts
Reads are sampled according to Poisson distribution

Hierarchical Model

z ∼ N (µ,Σ) Basis
λj |z = ezj Average count of species j
Yj |z ∼ P(ezj ) Observed count of species j

Mixture Layer
Can be combined with a mixture model
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Mixture Layer
Can be combined with a mixture model
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Geometrical view

−2

−1

0

1

2

−4 −2 0 2
species 1

sp
ec

ie
s 

2

Basis

0

5

10

15

0 10 20
species 1

sp
ec

ie
s 

2

Expected counts

0

5

10

15

0 10 20
species 1

sp
ec

ie
s 

2

count

2.5

5.0

7.5

Expected and observed counts

0.0

2.5

5.0

7.5

10.0

12.5

0 10 20
species 1

sp
ec

ie
s 

2

count

2.5

5.0

7.5

Observed counts

M. Mariadassou - INRAE Multivariate Count Data Summer School, Weihai 2021 53 / 69



Example of Poisson Log-Normal
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Pros and Cons

Pros
+ Good for heterogeneity

+ Good for dispersion

+ Good for correlations between OTUs
+ Modeling done at the count level
 counts can be on different scales and come from different sources

Cons
- The model is not parsimonious: p(p+ 3)/2 parameters
- Inference is quite involved
 iterative EM algorithm + gradient descent

- Sequencing depths are only controlled on average
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Partial Summary

Log-Normal models are good at
modeling compositions;
modeling dispersion around average compositions;
modeling heterogeneity;
modeling interactions between OTUs;
accounting for covariates through the linear model.

Log-Normal models are bad at
being parsimonious

MLN results are easier to interpret (proportions)
PLN allows to mix data from different sources (16S, ITS, etc.)
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Outline

1 Tentative Syllabi

2 Motivation

3 Multinomial Models

4 Log-Normal Models

5 Applications
PCA
Linear Discriminant Analysis
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PLN model in Microbial Ecology

PLN: a flexible models accounting for:
Heterogeneity and average compositions (' first order moments)
Dispersion and correlation between OTUs (' second order moments)
Structuring covariates
Counts coming from dfferent data sources

Allows for traditional multivariate analysis:
Idea: put additional constraints in the model

PCA  small rank Σ
Linear Discriminant Analysis  known group structure on µ
Network Inference  sparse/tree-like Σ−1

Mixture Models  unknown group structure on µ
etc.
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PLN-PCA: summarize information

Dimension reduction and vizualization. Typical task in multivariate analysis

Zi iid ∼ Np(0p,Σ), rank(Σ) = q � p

Yi |Zi ∼ P(exp{Oi + Xiβ + Zi})

 Find a low-dimensional base (PCA axes) to represent the latent covariance

Fit the PLNPCA models with offsets and various covariates.
Qmax = 30; Q <- 1:Qmax;

## Model with offset
models.offset <- PLNPCA(counts ˜ 1 + offset(log(offsets)), ranks=Q)

## Models with offset and covariates (tree + orientation)
formula <- counts ˜ 1 + covariates$tree + covariates$orientation + offset(log(offsets))
models.tree.orientation <- PLNPCA(formula, ranks=Q) # approx 10 mn
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PCA: vizualization
PLN PCA separates well the kind of tree
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Figure: offset only offset + covariates
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PCA: vizualization II
Introduction of covariates unravels hidden patterns
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Figure: offset only offset + covariates
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Fit the PLNLDA models
find the linear combinaison that separates the grouping

Fit the model with offsets, and various covariates

myLDA_tree <- PLNLDA(Abundance ˜ offset(log(Offset)), grouping = tree, data = oaks)

##
## Performing discriminant Analysis...
## DONE!

myLDA_tree$plot_LDA()
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LDA on tree status

Axes contribution
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Prediction error (10 fold cross-validation)

susceptible intermediate resistant
intermediate 0 38 0
resistant 0 0 39
susceptible 39 0 0
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Conclusion

Summary PLN = generic model for multivariate counts
Corrects for covariates and offset (' sequencing depths)
Flexible statistical modeling
PLNmodels R-package

Additional extensions
Add technical/biological ”zeros” (zero-inflation)
Extensions: sparse PCA, mixture models
Confidence interval and tests
Missing data. . .
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sp 1 sp j sp p

site 1 14 0 78

site j 36 34 56

site n 80 0 12

Counts Y

cov 1 cov h cov d

site 1 A 1.2 hi

site j A 2.6 lo

site n B 3.8 lo

Covariates X

sp 1 sp j sp p

cov 1 0.1 0.6 1.2

cov h 0.3 2.3 1.1

cov d 0.4 -1.2 1.4

Fixed effects Θ

sp 1 sp j sp p

sp 1 1 -0.2 0.3

sp j -0.2 2 1.1

sp p 0.3 1.1 3

Variance Σ
Effect of cov. h 

on sp. j

Covariation between 
Species j and p

Obs. counts
Y|Z ~ P(eZ)

Latent layer
Z ~ N(μ, Σ) μ = XΘ: environ-

mental effects

Σ: species
dependencies

Standard PLN 

Constrain species abundances μ

PLN-LDA: compare sites

Goal: cluster sites into 
homogeneous groups 

Constraint: μ = μ
k
 if site in 

unknown group k

PLN-mixture: find groups

Constrain species dependencies Σ

Goal: find few structuring factors 
governing species dependencies

Model: force Σ to have low rank

PLN-PCA: find structure

Goal: find pairs of species in 
direct interaction

Model: force Ω-1 = Σ to be sparse

PLN-network: find interactions

Input
Output

Classification accuracy: 94.3%
(work with S. Even)

Work with C. VacherWork with N. Peyrard and M.-J. Cros
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